Chromatin Loops as Allosteric Modulators of Enhancer-Promoter Interactions
نویسندگان
چکیده
The classic model of eukaryotic gene expression requires direct spatial contact between a distal enhancer and a proximal promoter. Recent Chromosome Conformation Capture (3C) studies show that enhancers and promoters are embedded in a complex network of looping interactions. Here we use a polymer model of chromatin fiber to investigate whether, and to what extent, looping interactions between elements in the vicinity of an enhancer-promoter pair can influence their contact frequency. Our equilibrium polymer simulations show that a chromatin loop, formed by elements flanking either an enhancer or a promoter, suppresses enhancer-promoter interactions, working as an insulator. A loop formed by elements located in the region between an enhancer and a promoter, on the contrary, facilitates their interactions. We find that different mechanisms underlie insulation and facilitation; insulation occurs due to steric exclusion by the loop, and is a global effect, while facilitation occurs due to an effective shortening of the enhancer-promoter genomic distance, and is a local effect. Consistently, we find that these effects manifest quite differently for in silico 3C and microscopy. Our results show that looping interactions that do not directly involve an enhancer-promoter pair can nevertheless significantly modulate their interactions. This phenomenon is analogous to allosteric regulation in proteins, where a conformational change triggered by binding of a regulatory molecule to one site affects the state of another site.
منابع مشابه
Chromatin loops as modulators of enhancer-promoter interactions in their vicinity
The classic model of eukaryotic gene expression requires direct spatial contact between a distal enhancer and a proximal promoter. However, recent chromosome conformation capture studies (e.g. Hi-C) show that enhancer and promoters are embedded in a complex network of cell-type specific looping interactions. Here we investigate whether, and to what extent, looping interactions between elements ...
متن کاملComputational tools for studying gene regulation in the 3-dimensional genome
Determining the 3-dimensional structure of the genome and its impact on gene expression has been a long-standing question in cell biology. Recent development in mapping technologies for chromatin interactions has led to a rapid increase in this kind of interaction data, revealing a hierarchical organization of the 3D genome, from large compartments spanning multiple chromosomes, to mega-base-si...
متن کاملThe role of insulator elements in large-scale chromatin structure in interphase.
Insulator elements can be classified as enhancer-blocking or barrier insulators depending on whether they interfere with enhancer-promoter interactions or act as barriers against the spreading of heterochromatin. The former class may exert its function at least in part by attaching the chromatin fiber to a nuclear substrate such as the nuclear matrix, resulting in the formation of chromatin loo...
متن کاملTranscription factors mediate long-range enhancer-promoter interactions.
We examined how remote enhancers establish physical communication with target promoters to activate gene transcription in response to environmental signals. Although the natural IFN-beta enhancer is located immediately upstream of the core promoter, it also can function as a classical enhancer element conferring virus infection-dependent activation of heterologous promoters, even when it is pla...
متن کاملCTCF modulates Estrogen Receptor function through specific chromatin and nuclear matrix interactions
Enhancer regions and transcription start sites of estrogen-target regulated genes are connected by means of Estrogen Receptor long-range chromatin interactions. Yet, the complete molecular mechanisms controlling the transcriptional output of engaged enhancers and subsequent activation of coding genes remain elusive. Here, we report that CTCF binding to enhancer RNAs is enriched when breast canc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014